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How Do You Decide Whether to Ghost a Text or Reply to It?

VoiceMsg? | Sender | Busy? | Time | Num Messages ||| Reply?
1 No Family Yes Day 1-2 Reply
2 Yes Family Yes | Night >5 Ghost
3 No Stranger | No Day 1-2 Ghost
4 No Friend No Day >5 Ghost
5 No Friend No | Night 3-4 Ghost
6 No Family No | Night >5 Reply
7 No Friend Yes Day 3-4 Ghost
8 Yes Friend No Day 1-2 Ghost
9 No Friend No Day 1-2 Reply
10 No Family No | Night 3-4 Reply
11 No Friend No | Night 1-2 Reply
12 No Family Yes | Night 1-2 Ghost
13 No Friend No Day 3-4 Ghost
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Decision Tree: an Example
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Decision Tree: an Example
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Decision Tree: an Example
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Decision Tree: an Example
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How Does Decision Tree Work?
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Classification happens
from root to leaves.

Each leaf nodes assign
a classification (label).

Each internal node
tests an attribute.

» Edges are attribute

values.

Example: [VoiceMsg?:No, Sender?:Friend, Busy?:No, NumMsgs?:3, Time?:13:04]
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In-Class Exercise

» Construct a decision tree that describes how you deal with texts
(very simple tree is OK, use the shape tool to draw boxes)

» How many different trees are possible? Are some trees better
than others?

» Decision Trees are still very much being used in industry. Why
do you think they have not been replaced with generative Al?
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Expressiveness of Decision Trees

» Each decision describes a mapping from attribute values to
labels (e.g., Ghost or Reply).
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Expressiveness of Decision Trees

» Each decision describes a mapping from attribute values to
labels (e.g., Ghost or Reply).

» The number of different trees depends on how many possible
attribute value combinations there are.
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Expressiveness of Decision Trees

» Each decision describes a mapping from attribute values to
labels (e.g., Ghost or Reply).

» The number of different trees depends on how many possible

attribute value combinations there are.
» In our example: 5 attributes.
> VoiceMsg? (2 values)
> Busy? (2 values)
» Time? (2 values: day/night)
» Sender? (3 values)
» NumMsgs? (3 values)
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Expressiveness of Decision Trees

» Each decision describes a mapping from attribute values to
labels (e.g., Ghost or Reply).

» The number of different trees depends on how many possible

attribute value combinations there are.
» In our example: 5 attributes.
> VoiceMsg? (2 values)
> Busy? (2 values)
» Time? (2 values: day/night)
» Sender? (3 values)
» NumMsgs? (3 values)

» Total distinct input combinations =2 X 2 x 2 x 3 x 3 = 72.
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Expressiveness of Decision Trees

» Each decision describes a mapping from attribute values to
labels (e.g., Ghost or Reply).

» The number of different trees depends on how many possible

attribute value combinations there are.
» In our example: 5 attributes.
> VoiceMsg? (2 values)
> Busy? (2 values)
» Time? (2 values: day/night)
» Sender? (3 values)
» NumMsgs? (3 values)

» Total distinct input combinations =2 X 2 x 2 x 3 x 3 = 72.
» For each of these 72 cases we can decide ~ " Ghost" or ™ " Reply."
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Expressiveness of Decision Trees

» Each decision describes a mapping from attribute values to
labels (e.g., Ghost or Reply).
» The number of different trees depends on how many possible

attribute value combinations there are.
» In our example: 5 attributes.
> VoiceMsg? (2 values)
> Busy? (2 values)
» Time? (2 values: day/night)
» Sender? (3 values)

» NumMsgs? (3 values)
» Total distinct input combinations =2 X 2 x 2 x 3 x 3 = 72.
» For each of these 72 cases we can decide "~ Ghost" or ™ Reply.'

» That gives 27 possible trees (more than a quadrillion).
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2nd Law of Thermodynamics: Entropy Always Increases

Start of the semester: End of the semester:
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Entropy tells you how much information you need

Entropy of a Boolean variable

» Sis a sample of training examples
» p. is the proportion of positive examples in S
» p_ is the proportion of negative examples in S

» Entropy measures the uncertainty/messiness of S
Entropy(S) = —p, log, p;, — p- 10g, p-,
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Entropy Example

Suppose we have a sample S=¢t, 1, f. 1.

General definition of entropy
If a target value takes on many values,

Entropy(S) = > ¢, —pilogy(p;)
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Entropy Example

Suppose we have a sample S=¢t, 1, f. 1.

10T

Entropy(S) = —ps10g, ps, — p-10g, p- b
— —(1/4)log,(1/1) - (3/1)log,(3/4)
= 0.811bits

0.0 0.5 1.0

General definition of entropy
If a target value takes on many values,
Entropy(S) = i, —pilog(p))
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Which attribute is the best classifier?

VoiceMsg? | Sender | Busy? | Time | Num Messages ||| Reply?

1 No Family Yes Day 1-2 Reply
2 Yes Family Yes | Night >5 Ghost
3 No Stranger | No Day 1-2 Ghost
4 No Friend No Day >5 Ghost
5 No Friend No | Night 3-4 Ghost
6 No Family No | Night >5 Reply
7 No Friend Yes Day 3-4 Ghost
8 Yes Friend No Day 1-2 Ghost
9 No Friend No Day 1-2 Reply
10 No Family No | Night 3-4 Reply
11 No Friend No | Night 1-2 Reply
12 No Family Yes | Night 1-2 Ghost
13 No Friend No Day 3-4 Ghost




Decision Trees Entropy and Information Gain Training and Pruning
00000 000000 000000

Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).
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Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).

> So the entropy is —3;log, () — logy(5) ~ 0.961
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Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).

> So the entropy is —;log, () — logy(35) ~ 0.961

>
Yes No Da Night Yes No

13 ] (@ ) (@5 ] (63 ) [ 02 ] [ (¢6/6) |




Decision Trees Entropy and Information Gain Training and Pruning
00000 000000 000000

Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).
> So the entropy is —3/og,(3) — %/log, (%) ~ 0.961

Yes No Day Night Yes No
{ (1/3) } { (4/5) J { (2/5) J { (3/3) J { 0/2) } { 5/6) J
E~ (0.811 E ~ 0.991 E ~ 0.863 E=1 E=0 E ~ 0.994

>
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Information Gain
» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8

classified as "Ghost" (5/8).
> So the entropy is —3/og,(3) — %/log, (%) ~ 0.961

Yes No Day Night Yes No
{ (1/3) } { (4/5) J { (2/5) J { 3/3) J { (0/2) } { (5/6) J
E~ (0.811 E ~ 0.991 E ~ 0.863 E=1 E=0 E ~ 0.994

» When splitting on Busy, the final entropy is % *0.811 + 1% x0.991 ~ 0.936.

>
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Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).
> So the entropy is —3/og,(3) — %/log, (%) ~ 0.961

Yes No Day Night Yes No
{ (1/3) } { (4/5) J { (2/5) J { 3/3) J { (0/2) } { (5/6) J
E~ (0.811 E ~ 0.991 E ~ 0.863 E=1 E=0 E ~ 0.994

» When splitting on Busy, the final entropy is % *0.811 + 1% x0.991 ~ 0.936.
» When splitting on Time, the final entropy is % x 0.863 + 1% x 1 =~ 0.926.

>
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Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).
> So the entropy is —3/og,(3) — %/log, (%) ~ 0.961

Yes No Day Night Yes No
{ (1/3) } { (4/5) J { (2/5) J { 3/3) J { (0/2) } { (5/6) J
E~ (0.811 E ~ 0.991 E ~ 0.863 E=1 E=0 E ~ 0.994

» When splitting on Busy, the final entropy is 75 * 0.811 + 15 * 0.991 = 0.936.
» When splitting on Time, the final entropy is {5 * 0 863 —I— 75 * 1 ~ 0.926.
» When splitting on VoiceMsg, the final entropy is 15 %0 + * 0.994 ~ 0.841.

>
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Information Gain

» Initially, we have 13 examples, of which 5 are classified as "Reply" and 8
classified as "Ghost" (5/8).
> So the entropy is —3/og,(3) — %/log, (%) ~ 0.961

Yes No Day Night Yes No
{ (1/3) } { (4/5) J { (2/5) J { 3/3) J { (0/2) } { (5/6) J
E~ (0.811 E ~ 0.991 E ~ 0.863 E=1 E=0 E ~ 0.994

» When splitting on Busy, the final entropy is 75 * 0.811 + 15 * 0.991 = 0.936.
» When splitting on Time, the final entropy is {5 * 0 863 —I— 75 * 1 ~ 0.926.

» When splitting on VoiceMsg, the final entropy is 15 %0 + * 0.994 ~ 0.841.
» So, the highest info gain is 0.961 — 0.841 = 0.12 (V0|ceMsg).

>
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ID3 (lterative Dichotomiser 3) Algorithm

ID3 Algorithm

» If all examples have same label:
» Return leaf with that label.
» Else if there are no features left to test:

» Return leaf with most common label.
» Else:

> Choose feature F to maximizes the info-gain relative to the current node.
» Add a branch from the node for each possible value of fin F.
» For each branch:

> Remove F from the set of features.

» Recursively call the algorithm to deepen the decision tree.
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Learning Curve (this is for an example in your book)

» 100 examples, split into training/test data sets

Entropy and Information Gain
000000

» Each data point is average of 20 trials
» What do we infer?

% correct on test set
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Pruning

Pruning: Remove the subtree rooted at the node, make it a leaf, and assign it
the most common classification.

» Apply a statistical test to estimate whether expanding/pruning a node is
likely to improve the performance beyond the training set.
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Pruning

Pruning: Remove the subtree rooted at the node, make it a leaf, and assign it
the most common classification.

When to prune?

» Apply a statistical test to estimate whether expanding/pruning a node is
likely to improve the performance beyond the training set.

» AND/OR use validation data: a separate set of examples, distinct from the
training set, to evaluate utility of post-pruning nodes from the tree.



Never Test on you Training Datal

e
SN T

Training Validation -

. How good
Which I
Models learn the task . ich mode is this
is the best?
model truly?




Decision Trees Entropy and Information Gain Training and Pruning
00000 000000 000000

Random Forests

Dataset

Decision tree-1 Decision tree-2 Decision tree-3 Decision tree-N

l l l l

Result-1 Result-2 Result-3 Result-N

|
Majority voting

!

Final result
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Random Forests

» Generate K (potentially smaller) datasets by randomly sampling
with replacement.

» Select random sampling of attributes at each split point in
constructing the tree.

» Reduce variance (more likely for one classifier to make a
mistake than for half of all classifiers to make a mistake)
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Decision Tree Recap

» Decision trees can be used to learn discrete-valued functions.

» The ID3 algorithm maximizes information gain to learn a
decision tree.

» Pruning reduced overfitting.
» Random forests make decision trees viable on large datasets.



