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Normal Forms: Motivation

▶ A normal form for a logic is a syntactic restriction such that every formula in the
logic has an equivalent formula in the normal form.

▶ Assuming that the input is in the normal form facilitates automation.

▶ The two key normal norms for propositional logic are:
▶ Conjunctive Normal Form
▶ Disjunctive Normal Form

Fedchin (Tufts) August 2024 2 / 15



Normal Forms: Motivation

▶ A normal form for a logic is a syntactic restriction such that every formula in the
logic has an equivalent formula in the normal form.

▶ Assuming that the input is in the normal form facilitates automation.

▶ The two key normal norms for propositional logic are:
▶ Conjunctive Normal Form
▶ Disjunctive Normal Form

Fedchin (Tufts) August 2024 2 / 15



Normal Forms: Motivation

▶ A normal form for a logic is a syntactic restriction such that every formula in the
logic has an equivalent formula in the normal form.

▶ Assuming that the input is in the normal form facilitates automation.

▶ The two key normal norms for propositional logic are:
▶ Conjunctive Normal Form
▶ Disjunctive Normal Form

Fedchin (Tufts) August 2024 2 / 15



Conjunctive Normal Form

▶ A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where each clause is a disjunction of literals. Examples:
▶ (p ∨ q) ∧ (q ∨ ¬r)
▶ (p ∨ ¬p) ∧ (a ∨ d ∨ ¬a) ∧ c
▶ p ∧ q
▶ p ∨ ¬p ≡ T

▶ A formula is a tautology if and only if every clause in its CNF representation
contains a pair of complementary literals.

▶ Any clause in the CNF that does not have such a pair gives a variable truth
assignment (a.k.a. interpretation) that falsifies the formula.

Fedchin (Tufts) August 2024 3 / 15



Conjunctive Normal Form

▶ A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where each clause is a disjunction of literals. Examples:
▶ (p ∨ q) ∧ (q ∨ ¬r)
▶ (p ∨ ¬p) ∧ (a ∨ d ∨ ¬a) ∧ c
▶ p ∧ q
▶ p ∨ ¬p ≡ T

▶ A formula is a tautology if and only if every clause in its CNF representation
contains a pair of complementary literals.

▶ Any clause in the CNF that does not have such a pair gives a variable truth
assignment (a.k.a. interpretation) that falsifies the formula.

Fedchin (Tufts) August 2024 3 / 15



Conjunctive Normal Form

▶ A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where each clause is a disjunction of literals. Examples:
▶ (p ∨ q) ∧ (q ∨ ¬r)
▶ (p ∨ ¬p) ∧ (a ∨ d ∨ ¬a) ∧ c
▶ p ∧ q
▶ p ∨ ¬p ≡ T

▶ A formula is a tautology if and only if every clause in its CNF representation
contains a pair of complementary literals.

▶ Any clause in the CNF that does not have such a pair gives a variable truth
assignment (a.k.a. interpretation) that falsifies the formula.

Fedchin (Tufts) August 2024 3 / 15



Disjunctive Normal Form

▶ A formula is in disjunctive normal form (DNF) if it is a disjunction of clauses,
where each clause is a conjunction of literals.
▶ (p ∧ q) ∨ (q ∧ ¬r)
▶ p ∨ q
▶ (p ∧ ¬p) ∨ (a ∧ d ∧ ¬a) ∨ c
▶ p ∧ ¬p ≡ F

▶ A formula is false under every interpretation if and only if every clause in its DNF
representation contains a pair of complementary literals.

▶ Any clause in the DNF that does not have such a pair gives an interpretation that
satisfies the formula.

Fedchin (Tufts) August 2024 4 / 15



Disjunctive Normal Form

▶ A formula is in disjunctive normal form (DNF) if it is a disjunction of clauses,
where each clause is a conjunction of literals.
▶ (p ∧ q) ∨ (q ∧ ¬r)
▶ p ∨ q
▶ (p ∧ ¬p) ∨ (a ∧ d ∧ ¬a) ∨ c
▶ p ∧ ¬p ≡ F

▶ A formula is false under every interpretation if and only if every clause in its DNF
representation contains a pair of complementary literals.

▶ Any clause in the DNF that does not have such a pair gives an interpretation that
satisfies the formula.

Fedchin (Tufts) August 2024 4 / 15



Disjunctive Normal Form

▶ A formula is in disjunctive normal form (DNF) if it is a disjunction of clauses,
where each clause is a conjunction of literals.
▶ (p ∧ q) ∨ (q ∧ ¬r)
▶ p ∨ q
▶ (p ∧ ¬p) ∨ (a ∧ d ∧ ¬a) ∨ c
▶ p ∧ ¬p ≡ F

▶ A formula is false under every interpretation if and only if every clause in its DNF
representation contains a pair of complementary literals.

▶ Any clause in the DNF that does not have such a pair gives an interpretation that
satisfies the formula.

Fedchin (Tufts) August 2024 4 / 15



Duality of Satisfiability and Tautology

▶ An interpretation I for a propositional formula F maps every variable in F to a
truth value: I : {p 7→ T, q 7→ F}.

▶ I is a satisfying interpretation of F , written as I |= F , if F evaluates to true under I .

▶ For example, {p 7→ T, q 7→ F} |= p ∧ ¬q.
▶ A formula F is satisfiable if and only if I |= F for some I .

▶ F is a tautology if ¬F is unsatisfiable.

▶ A SAT solver can find a satisfying interpretation or it can prove that a formula is a
tautology.
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Recall Some Useful Logical Equivalences

p ∧ T ≡ p
Identity laws

p ∨ F ≡ p
p ∨ T ≡ T

Domination laws
p ∧ F ≡ F
p ∨ p ≡ p

Idempotent laws
p ∧ p ≡ p
p ≡ ¬(¬p) Double negation law
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p → q ≡ ¬p ∨ q Implication elimination law
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

Bicondition elimination laws
p ↔ q ≡ (p → q) ∧ (q → p)

p ∨ q ≡ q ∨ p
Commutative laws

p ∧ q ≡ q ∧ p
¬(p ∧ q) ≡ ¬p ∨ ¬q

De Morgan’s laws¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p

Absorption laws
p ∧ (p ∨ q) ≡ p
p ∨ ¬p ≡ T

Negation laws
p ∧ ¬p ≡ F
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Converting to CNF (DNF)

Any propositional formula can be converted to CNF (DNF) using the following
algorithm:

▶ Eliminate all implications and biconditionals.

▶ Apply De Morgan’s laws to move negation inward.

▶ Remove all double negations (the result is sometimes called negation normal form).

▶ Distribute over conjunction (disjunction).
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Conversion to CNF

((p → q) ∧ ¬q) → ¬p ≡ ¬((p → q) ∧ ¬q) ∨ ¬p by eliminating implication
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CNF (DNF) Conversion can be infeasible inpractice

(a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h)

≡ (a ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h)) ∧ (b ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h))

≡ (a ∨ c ∨ (e ∧ f ) ∨ (g ∧ h)) ∧ (a ∨ d ∨ (e ∧ f ) ∨ (g ∧ h))

∧ (b ∨ c ∨ (e ∧ f ) ∨ (g ∧ h)) ∧ (b ∨ d ∨ (e ∧ f ) ∨ (g ∧ h))

≡ (a ∨ c ∨ e ∨ (g ∧ h)) ∧ (a ∨ c ∨ f ∨ (g ∧ h)) ∧ (a ∨ d ∨ e ∨ (g ∧ h)) ∧ (a ∨ d ∨ f ∨ (g ∧ h))

∧ (b ∨ c ∨ e ∨ (g ∧ h)) ∧ (b ∨ c ∨ f ∨ (g ∧ h)) ∧ (b ∨ d ∨ e ∨ (g ∧ h)) ∧ (b ∨ d ∨ f ∨ (g ∧ h)

≡ (a ∨ c ∨ e ∨ g) ∧ (a ∨ c ∨ e ∨ h) ∧ (a ∨ c ∨ f ∨ g) ∧ (a ∨ c ∨ f ∨ h)

∧ (a ∨ d ∨ e ∨ g) ∧ (a ∨ d ∨ e ∨ h) ∧ (a ∨ d ∨ f ∨ g) ∧ (a ∨ d ∨ f ∨ h)

∧ (b ∨ c ∨ e ∨ g) ∧ (b ∨ c ∨ e ∨ h) ∧ (b ∨ c ∨ f ∨ g) ∧ (b ∨ c ∨ f ∨ h)

∧ (b ∨ d ∨ e ∨ g) ∧ (b ∨ d ∨ e ∨ h) ∧ (b ∨ d ∨ f ∨ g) ∧ (b ∨ d ∨ f ∨ h)

Fedchin (Tufts) August 2024 9 / 15



CNF (DNF) Conversion can be infeasible inpractice

(a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h)

≡ (a ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h)) ∧ (b ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h))

≡ (a ∨ c ∨ (e ∧ f ) ∨ (g ∧ h)) ∧ (a ∨ d ∨ (e ∧ f ) ∨ (g ∧ h))

∧ (b ∨ c ∨ (e ∧ f ) ∨ (g ∧ h)) ∧ (b ∨ d ∨ (e ∧ f ) ∨ (g ∧ h))

≡ (a ∨ c ∨ e ∨ (g ∧ h)) ∧ (a ∨ c ∨ f ∨ (g ∧ h)) ∧ (a ∨ d ∨ e ∨ (g ∧ h)) ∧ (a ∨ d ∨ f ∨ (g ∧ h))

∧ (b ∨ c ∨ e ∨ (g ∧ h)) ∧ (b ∨ c ∨ f ∨ (g ∧ h)) ∧ (b ∨ d ∨ e ∨ (g ∧ h)) ∧ (b ∨ d ∨ f ∨ (g ∧ h)

≡ (a ∨ c ∨ e ∨ g) ∧ (a ∨ c ∨ e ∨ h) ∧ (a ∨ c ∨ f ∨ g) ∧ (a ∨ c ∨ f ∨ h)

∧ (a ∨ d ∨ e ∨ g) ∧ (a ∨ d ∨ e ∨ h) ∧ (a ∨ d ∨ f ∨ g) ∧ (a ∨ d ∨ f ∨ h)

∧ (b ∨ c ∨ e ∨ g) ∧ (b ∨ c ∨ e ∨ h) ∧ (b ∨ c ∨ f ∨ g) ∧ (b ∨ c ∨ f ∨ h)

∧ (b ∨ d ∨ e ∨ g) ∧ (b ∨ d ∨ e ∨ h) ∧ (b ∨ d ∨ f ∨ g) ∧ (b ∨ d ∨ f ∨ h)
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Tseytin Transformation

▶ Original Formula: (a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f ) ∨ (g ∧ h)

▶ Introduce a new boolean variable for each subformula:
▶ w ↔ (a ∧ b)
▶ x ↔ (c ∧ d))
▶ y ↔ (e ∧ f ))
▶ z ↔ (g ∧ h))

▶ Now combine this together into an equisatisfiable formula:
(w ∨ x ∨ y ∨ z)∧ (¬w ∨a)∧ (¬w ∨b)∧ (¬a∨¬b∨w)∧ (¬x ∨ c)∧ (¬x ∨d)∧ (¬c ∨
¬d ∨ x)∧ (¬y ∨ e)∧ (¬y ∨ f )∧ (¬e ∨¬f ∨ y)∧ (¬z ∨ g)∧ (¬z ∨h)∧ (¬g ∨¬h∨ z)

▶ Input: 4 Conjunctive clauses. Output: 1 + 3 ∗ 4 = 13 disjunctive clauses.

▶ Note that the formula is not logically equivalent. E.g. Tseytin transformation
would map (¬a ∨ b) ↔ (a → b) to
(¬x∨¬a∨b)∧(a∨x)∧(¬b∨x)∧(¬y∨¬a∨b)∧(a∨y)∧(¬b∨y)∧(¬x∨y)∧(¬y∨x).
The former is a tautology, the latter is not.
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Encoding Text into Logic

From Alice in Puzzleland by Raymond Smullyan:

“The only possible suspects were the Cook, the Duchess, and the Cheshire Cat.
“The Cheshire Cat stole it!” said the Duchess at the trial.
“Oh, yes, I stole it!” said the Cheshire Cat with a grin.
“I didn’t steal it!” said the Cook.
As it turned out, the thief had lied and at least one of the others had told the truth.
Who stole the cookbook?”
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SAT Encoding and Tseytin Transformation Example

Original Formula:

∧ (d ↔ C )

∧ (c ↔ C )

∧ (k ↔ ¬K )

∧ (D → (¬d ∧ (k ∨ c)))

∧ (K → (¬k ∧ (c ∨ d)))

∧ (C → (¬c ∧ (d ∨ k))

∧ (D ∨ C ∨ K )
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∧ (D ∨ C ∨ K )

▶ Introduce variables x , y , z , X , Y , Z :

▶ x ↔ (k ∨ c) and X ↔ (¬d ∧ x)
▶ y ↔ (c ∨ d) and Y ↔ (¬k ∧ y)
▶ z ↔ (d ∨ k) and Z ↔ (¬c ∧ z)

▶ Solution (obtained by a SAT solver):
D ∧ ¬K ∧ ¬C ∧ ¬d ∧ ¬c ∧ k ∧ X ∧ x ∧
¬Y ∧ ¬y ∧ Z ∧ z

New Formula (CNF):

∧ (¬d ∨ C ) ∧ (¬C ∨ d)

∧ (¬c ∨ C ) ∧ (¬C ∨ c)

∧ (¬k ∨ ¬K ) ∧ (K ∨ k)

∧ (¬D ∨ X )

∧ (¬K ∨ Y )

∧ (¬C ∨ Z )

∧ (¬x ∨ k ∨ c) ∧ (¬k ∨ x) ∧ (¬c ∨ x)

∧ (¬y ∨ c ∨ d) ∧ (¬c ∨ y) ∧ (¬d ∨ y)

∧ (¬z ∨ d ∨ k) ∧ (¬d ∨ z) ∧ (¬k ∨ z)

∧ (¬X ∨ ¬d) ∧ (¬X ∨ x)) ∧ (d ∨ ¬x ∨ X )

∧ (¬Y ∨ ¬k) ∧ (¬Y ∨ y)) ∧ (k ∨ ¬y ∨ Y )

∧ (¬Z ∨ ¬c) ∧ (¬Z ∨ z)) ∧ (c ∨ ¬z ∨ Z )

∧ (D ∨ C ∨ K )
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Smullyan’s Solution

▶ “It is impossible that the Cheshire Cat stole it, because the thief would then be
telling the truth. Therefore the Cheshire Cat didn’t steal it (and the Cat and the
Duchess were both lying). If the Cook stole it, then all three would be lying, which
is contrary to what was given. Therefore the Duchess stole it (and hence the
Duchess is lying, the Cheshire Cat is lying, and the Cook is telling the truth).”

▶ Smullyan uses backtracking, which is the core of modern SAT solving!
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Recap

▶ Tautology and Satisfiability are complements of each other.

▶ Formulas in Conjunctive or Disjunctive Normal Form are easier to analyze.

▶ Converting a formula to CNF (DNF) can incur exponential running time.

▶ Tseytin transformation is efficient and provides an equisatisfiable formula in CNF.

▶ Modern SAT solvers begin by translating a formula to CNF using Tseytin
transformation or similar techniques.
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