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Propositional Logic

» A proposition is a declarative sentence, such as “It is raining”, “2+2=5", “l have
an umbrella” or “All lions are fierce”.
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A proposition is a declarative sentence, such as “lt is raining”, “2+2=5", “l have
an umbrella” or “All lions are fierce”.

By contrast, “Let's go!” and “Who are you?" are not propositions.

A logic (or calculus) is a system of rules used to reason about truth or falsehood of
propositions.

Propositional logic concerns itself with compound propositions (formulas) made by
using logical operations “or”, “and”, and “not”.
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By contrast, “Let's go!” and “Who are you?" are not propositions.

A logic (or calculus) is a system of rules used to reason about truth or falsehood of
propositions.

Propositional logic concerns itself with compound propositions (formulas) made by
using logical operations “or”, “and”, and “not”.

Suppose it is true that “If it is raining, then | have an umbrella”, and “l don't have
an umbrella”. Can we conclude that “It is not raining”? Propositional logic allows
us to answer this question.

Solving questions like the one above can be hard (co-NP-complete).
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» Let p = “lt is raining”, and g = "l have an umbrella”. Then:
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Compound Propositions (Continued)
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Compound Propositions (Continued)

» Let p = “It is raining”, and g = "l have an umbrella”. Then:

» p — g stands for “If it is raining, then | have an umbrella” (implication).

p <> q stands for “It is raining, if and only if | have an umbrella” (biconditional).
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Logical Equivalence (Implication Elimination Law)

Note that for any value of p and g, p — g always has the same value as —p V gq:
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Note that for any value of p and q, p — g always has the same value as —p V g:
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The same can be expressed as:

» p— g and —pV q are logically equivalent.

» (p— q) <> (—pV q) is true for any value of p and g.

» (p—q) < (—pVq)is a tautology.

> p—>g=-pVg.

Similarly, p <> g=(pAq)V (=p A —q).

Fedchin (Tufts)

August 2024

5/9



Other Useful Logical Equivalences

pVg=qVp
PANG=qAp

Commutative laws

De Morgan's laws

pV(pAg)=p
pA(PVa) =p

Absorption laws

Z C :‘-ig Identity laws
g X :; |-:r Domination laws
Z X Z i ﬁ Idempotent laws
= —~(=p) Double negation law
b . gz ’ g _ Eg . Z; y El’j 1) | Distributive laws
EZ X Z; X : i z/v\ EZ X g Associative laws

pV-p=T
pA-p=F

Negation laws
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Truth Table Proof

» Let p = “Itis raining”, and g = "l have an umbrella”.
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» Is this a good proof technique?
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Problem

. Truth Table Has Exponentially Many Rows
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Recap

» Propositional logic allows forming new propositions via conjunction (A), disjunction
(V), and negation (— operations.
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» One can prove logical equivalence by enumerating every possible variable
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Recap

» Propositional logic allows forming new propositions via conjunction (A), disjunction
(V), and negation (— operations.

» Implication (—) and biconditional (++) are shorthands for what can already be
expressed using the three basic operations above.

» One can prove logical equivalence by enumerating every possible variable
assignment (i.e. by using a truth table).

» Enumeration is guaranteed to have exponential running time.
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