## Propositional Logic Basics

COM 270: Introduction to Automated Deduction

Sasha Fedchin<sup>1</sup>

<sup>1</sup>Sotware Engineering Department AUCA

1/9

▶ A *proposition* is a declarative sentence, such as "It is raining", "2+2=5", "I have an umbrella" or "All lions are fierce".



2/9

- ▶ A *proposition* is a declarative sentence, such as "It is raining", "2+2=5", "I have an umbrella" or "All lions are fierce".
- ▶ By contrast, "Let's go!" and "Who are you?" are not propositions.

2/9

- ▶ A proposition is a declarative sentence, such as "It is raining", "2+2=5", "I have an umbrella" or "All lions are fierce".
- By contrast, "Let's go!" and "Who are you?" are not propositions.
- ▶ A *logic* (or *calculus*) is a system of rules used to reason about truth or falsehood of propositions.

2/9

- ▶ A *proposition* is a declarative sentence, such as "It is raining", "2+2=5", "I have an umbrella" or "All lions are fierce".
- By contrast, "Let's go!" and "Who are you?" are not propositions.
- ► A *logic* (or *calculus*) is a system of rules used to reason about truth or falsehood of propositions.
- ▶ *Propositional logic* concerns itself with compound propositions (formulas) made by using logical operations "or", "and", and "not".

2/9

- ► A proposition is a declarative sentence, such as "It is raining", "2+2=5", "I have an umbrella" or "All lions are fierce".
- By contrast, "Let's go!" and "Who are you?" are not propositions.
- ▶ A *logic* (or *calculus*) is a system of rules used to reason about truth or falsehood of propositions.
- ▶ *Propositional logic* concerns itself with compound propositions (formulas) made by using logical operations "or", "and", and "not".
- ➤ Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"? Propositional logic allows us to answer this question.

2/9

- ▶ A *proposition* is a declarative sentence, such as "It is raining", "2+2=5", "I have an umbrella" or "All lions are fierce".
- ▶ By contrast, "Let's go!" and "Who are you?" are not propositions.
- ▶ A *logic* (or *calculus*) is a system of rules used to reason about truth or falsehood of propositions.
- ▶ *Propositional logic* concerns itself with compound propositions (formulas) made by using logical operations "or", "and", and "not".
- ➤ Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"? Propositional logic allows us to answer this question.
- ▶ Solving questions like the one above can be hard (co-NP-complete).

2/9

## Compound Propositions

Let p = "It is raining", and q = "I have an umbrella". Then:

3/9

## Compound Propositions

- Let p = "It is raining", and q = "I have an umbrella". Then:
- ▶  $\neg p$  stands for "It is **not** raining" (negation).  $p \lor q$  stands for "It is raining **or** I have an umbrella" (disjunction).  $p \land q$  stands for "It is raining **and** I have an umbrella" (conjunction).

3/9

## Compound Propositions

- Let p = "It is raining", and q = "I have an umbrella". Then:
- ▶  $\neg p$  stands for "It is **not** raining" (negation).  $p \lor q$  stands for "It is raining **or** I have an umbrella" (disjunction).  $p \land q$  stands for "It is raining **and** I have an umbrella" (conjunction).

| <b>&gt;</b> | p<br>T | <i>¬p</i> F |
|-------------|--------|-------------|
|             | F      | Т           |

|   |   | \ /        |
|---|---|------------|
| p | q | $p \lor q$ |
| T | Т | Т          |
| T | F | Т          |
| F | Т | Т          |
| F | F | F          |

| р | q | $p \wedge q$ |
|---|---|--------------|
| Т | Т | Т            |
| Т | F | F            |
| F | Т | F            |
| F | F | F            |

Fedchin (Tufts)

3/9

# Compound Propositions (Continued)

Let p = "It is raining", and q = "I have an umbrella". Then:

4/9

# Compound Propositions (Continued)

- Let p = "It is raining", and q = "I have an umbrella". Then:
- $p \to q$  stands for "If it is raining, then I have an umbrella" (implication).  $p \leftrightarrow q$  stands for "It is raining, if and only if I have an umbrella" (biconditional).

4/9

# Compound Propositions (Continued)

- Let p = "It is raining", and q = "I have an umbrella". Then:
- p o q stands for "If it is raining, then I have an umbrella" (implication).  $p \leftrightarrow q$  stands for "It is raining, if and only if I have an umbrella" (biconditional).

|   | р | q | p 	o q |
|---|---|---|--------|
|   | Т | Т | Т      |
| Ī | Т | F | F      |
| ſ | F | Т | Т      |
|   | F | F | Т      |

| р | q | $p \leftrightarrow q$ |
|---|---|-----------------------|
| Т | Т | Т                     |
| Т | F | F                     |
| F | Т | F                     |
| F | F | Т                     |

4/9

Note that for any value of p and q,  $p \rightarrow q$  always has the same value as  $\neg p \lor q$ :

| р | q | p 	o q | р | q | $\neg p$ | - |
|---|---|--------|---|---|----------|---|
| Т | Т | T      | Т | Т | F        |   |
| T | F | F      | Т | F | F        |   |
| F | Т | Т      | F | Т | Т        |   |
| F | F | Т      | F | F | Т        |   |

The same can be expressed as:

5/9

Note that for any value of p and q,  $p \rightarrow q$  always has the same value as  $\neg p \lor q$ :

| р | q | p 	o q |
|---|---|--------|
| T | Т | T      |
| Т | F | F      |
| F | Т | T      |
| F | F | Т      |

| р | q | $\neg p$ | $\neg p \lor q$ |
|---|---|----------|-----------------|
| T | Т | F        | T               |
| Т | F | F        | F               |
| F | Т | Т        | Т               |
| F | F | Т        | Т               |

The same can be expressed as:

▶  $p \rightarrow q$  and  $\neg p \lor q$  are logically equivalent.

5/9

Note that for any value of p and q,  $p \rightarrow q$  always has the same value as  $\neg p \lor q$ :

| р | q | p 	o q |   |
|---|---|--------|---|
| Т | Т | T      |   |
| Т | F | F      | Π |
| F | Т | Т      | T |
| F | F | Т      |   |

| р | q | $\neg p$ | $\neg p \lor q$ |
|---|---|----------|-----------------|
| T | Т | F        | T               |
| Т | F | F        | F               |
| F | Т | Т        | Т               |
| F | F | Т        | Т               |

The same can be expressed as:

- ▶  $p \rightarrow q$  and  $\neg p \lor q$  are logically equivalent.
- ▶  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is true for any value of p and q.

5/9

Note that for any value of p and q,  $p \rightarrow q$  always has the same value as  $\neg p \lor q$ :

| р | q | p 	o q |  |
|---|---|--------|--|
| Т | Т | T      |  |
| Т | F | F      |  |
| F | Т | Т      |  |
| F | F | Т      |  |

| р | q | $\neg p$ | $\neg p \lor q$ |
|---|---|----------|-----------------|
| Т | Т | F        | T               |
| Т | F | F        | F               |
| F | Т | Т        | Т               |
| F | F | Т        | Т               |

| $\neg p \lor q$ | p 	o q | $(p 	o q) \leftrightarrow (\neg p \lor q)$ |
|-----------------|--------|--------------------------------------------|
| T               | T      | Т                                          |
| F               | F      | Т                                          |
| T               | Т      | Т                                          |
| Т               | Т      | T                                          |

The same can be expressed as:

- ▶  $p \rightarrow q$  and  $\neg p \lor q$  are logically equivalent.
- ▶  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is true for any value of p and q.
- $\blacktriangleright$   $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is a tautology.

5/9

Note that for any value of p and q,  $p \rightarrow q$  always has the same value as  $\neg p \lor q$ :

| р | q | p 	o q |
|---|---|--------|
| Т | Т | T      |
| Т | F | F      |
| F | Т | Т      |
| F | F | Т      |

| р | q | $\neg p$ | $\neg p \lor q$ |
|---|---|----------|-----------------|
| Т | Т | F        | T               |
| Т | F | F        | F               |
| F | Т | Т        | Т               |
| F | F | Т        | Т               |

| $\neg p \lor q$ | p 	o q | $(p 	o q) \leftrightarrow (\neg p \lor q)$ |
|-----------------|--------|--------------------------------------------|
| Т               | T      | Т                                          |
| F               | F      | Т                                          |
| Т               | Т      | Т                                          |
| Т               | Т      | Т                                          |

The same can be expressed as:

- ▶  $p \rightarrow q$  and  $\neg p \lor q$  are logically equivalent.
- ▶  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is true for any value of p and q.
- ▶  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is a tautology.
- $ightharpoonup p 
  ightharpoonup q \equiv \neg p \lor q.$

5/9

Note that for any value of p and q,  $p \rightarrow q$  always has the same value as  $\neg p \lor q$ :

| р | q | p 	o q |
|---|---|--------|
| Т | Т | T      |
| Т | F | F      |
| F | Т | Т      |
| F | F | Т      |

| р | q | $\neg p$ | $\neg p \lor q$ |
|---|---|----------|-----------------|
| T | Т | F        | T               |
| Т | F | F        | F               |
| F | Т | Т        | Т               |
| F | F | Т        | Т               |

| $\neg p \lor q$ | p 	o q | $(p  ightarrow q) \leftrightarrow (\lnot p \lor q)$ |
|-----------------|--------|-----------------------------------------------------|
| T               | Т      | Т                                                   |
| F               | F      | Т                                                   |
| Т               | Т      | Т                                                   |
| Т               | Т      | Т                                                   |

The same can be expressed as:

- ▶  $p \rightarrow q$  and  $\neg p \lor q$  are logically equivalent.
- ▶  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is true for any value of p and q.
- ▶  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is a tautology.

Similarly,  $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ .

ロ > 4 伺 > 4 き > 4 き > き のQ (~

5/9

# Other Useful Logical Equivalences

| $ \begin{array}{c} p \land \mathbf{T} \equiv p \\ p \lor \mathbf{F} \equiv p \end{array} $                       | Identity laws       |
|------------------------------------------------------------------------------------------------------------------|---------------------|
| $ \begin{array}{c} p \lor \mathbf{T} \equiv \mathbf{T} \\ p \land \mathbf{F} \equiv \mathbf{F} \end{array} $     | Domination laws     |
| $ \begin{array}{c} p \lor p \equiv p \\ p \land p \equiv p \end{array} $                                         | Idempotent laws     |
| $p \equiv \neg (\neg p)$                                                                                         | Double negation law |
| $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ | Distributive laws   |
| $(p \lor q) \lor r \equiv p \lor (q \lor r)  (p \land q) \land r \equiv p \land (q \land r)$                     | Associative laws    |

| $ \begin{array}{c} p \lor q \equiv q \lor p \\ p \land q \equiv q \land p \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commutative laws |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| $ egin{array}{l} egi$ | De Morgan's laws |
| $egin{aligned} egin{aligned} etaee (p\wedge q) &\equiv p \ eta\wedge (pee q) &\equiv p \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Absorption laws  |
| $ \begin{array}{c} p \lor \neg p \equiv \mathbf{T} \\ p \land \neg p \equiv \mathbf{F} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Negation laws    |

6/9

Let p = "It is raining", and q = "I have an umbrella".

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ➤ Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?



7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

|   | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|---|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|   | Т | Τ |        |          |                         |          |                                                    |
| • | Т | F |        |          |                         |          |                                                    |
|   | F | Т |        |          |                         |          |                                                    |
|   | F | F |        |          |                         |          |                                                    |

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

|   | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|---|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|   | Т | Т | Т      |          |                         |          |                                                    |
| • | Т | F | F      |          |                         |          |                                                    |
| ĺ | F | Т | Т      |          |                         |          |                                                    |
| Î | F | F | Т      |          |                         |          |                                                    |

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ➤ Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

|   | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|---|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|   | Т | Т | Т      | F        |                         |          |                                                    |
| • | Т | F | F      | Т        |                         |          |                                                    |
|   | F | Т | Т      | F        |                         |          |                                                    |
| Î | F | F | Т      | Т        |                         |          |                                                    |

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

|   | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|---|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|   | Т | Т | Т      | F        | F                       |          |                                                    |
| • | Т | F | F      | Т        | F                       |          |                                                    |
|   | F | Т | Т      | F        | F                       |          |                                                    |
|   | F | F | Т      | Т        | Т                       |          |                                                    |

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

|   | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|---|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|   | Т | Т | Т      | F        | F                       | F        |                                                    |
| • | Т | F | F      | Т        | F                       | F        |                                                    |
| ĺ | F | Т | Т      | F        | F                       | Т        |                                                    |
| ĺ | F | F | Т      | Т        | Т                       | Т        |                                                    |

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ➤ Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

|     | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|-----|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|     | Т | Т | Т      | F        | F                       | F        | Т                                                  |
| ▶ [ | Т | F | F      | Т        | F                       | F        | Т                                                  |
|     | F | Т | Т      | F        | F                       | Т        | Т                                                  |
|     | F | F | Т      | Т        | Т                       | Т        | Т                                                  |

7/9

- Let p = "It is raining", and q = "I have an umbrella".
- ► Suppose it is true that "If it is raining, then I have an umbrella", and "I don't have an umbrella". Can we conclude that "It is not raining"?
- ▶ Suppose  $(p \rightarrow q) \land \neg q$ . Can we conclude  $\neg p$ ?
- ▶ Is  $((p \rightarrow q) \land \neg q) \rightarrow \neg p$  true for any value of p and q. Is it a tautology?

| ĺ | р | q | p 	o q | $\neg q$ | $(p 	o q) \wedge  eg q$ | $\neg p$ | $((p  ightarrow q) \wedge  eg q)  ightarrow  eg p$ |
|---|---|---|--------|----------|-------------------------|----------|----------------------------------------------------|
|   | Т | Т | Т      | F        | F                       | F        | Т                                                  |
|   | Т | F | F      | Т        | F                       | F        | Т                                                  |
|   | F | Т | Т      | F        | F                       | Т        | Т                                                  |
| ĺ | F | F | Т      | Т        | Т                       | Т        | Т                                                  |

► Is this a good proof technique?



7/9

## Problem: Truth Table Has Exponentially Many Rows

| р | q | r | $\neg p$ | $p \lor \neg p$ | $\neg q$ | $q \lor \neg q$ | $\neg r$ | $r \vee \neg r$ | $oxed{(pee\neg p)\wedge(qee\neg q)\wedge(ree\neg r)}$ |
|---|---|---|----------|-----------------|----------|-----------------|----------|-----------------|-------------------------------------------------------|
| Т | Т | Т |          |                 |          |                 |          |                 |                                                       |
| T | Т | F |          |                 |          |                 |          |                 |                                                       |
| T | F | Т |          |                 |          |                 |          |                 |                                                       |
| T | F | F |          |                 |          |                 |          |                 |                                                       |
| F | Т | Т |          |                 |          |                 |          |                 |                                                       |
| F | Т | F |          |                 |          |                 |          |                 |                                                       |
| F | F | Т |          |                 |          |                 |          |                 |                                                       |
| F | F | F |          |                 |          |                 |          |                 |                                                       |

8/9

## Problem: Truth Table Has Exponentially Many Rows

| р | q | r | $\neg p$ | $p \lor \neg p$ | $\neg q$ | $q \lor \neg q$ | $\neg r$ | $r \vee \neg r$ | $(p \lor \neg p) \land (q \lor \neg q) \land (r \lor \neg r)$ |
|---|---|---|----------|-----------------|----------|-----------------|----------|-----------------|---------------------------------------------------------------|
| Т | Т | Т | F        | Т               | F        | Т               | F        | Т               | Т                                                             |
| T | Т | F | F        | Т               | F        | Т               | Т        | Т               | Т                                                             |
| T | F | Т | F        | Т               | Т        | Т               | F        | Т               | Т                                                             |
| Т | F | F | F        | Т               | Т        | Т               | Т        | Т               | Т                                                             |
| F | Т | Т | Т        | Т               | F        | Т               | F        | Т               | Т                                                             |
| F | Т | F | Т        | Т               | F        | Т               | Т        | Т               | Т                                                             |
| F | F | Т | Т        | Т               | Т        | Т               | F        | Т               | Т                                                             |
| F | F | F | Т        | Т               | Т        | Т               | Т        | Т               | Т                                                             |

8/9

## Recap

▶ Propositional logic allows forming new propositions via conjunction  $(\land)$ , disjunction  $(\lor)$ , and negation  $(\neg)$  operations.

9/9

## Recap

- ▶ Propositional logic allows forming new propositions via conjunction  $(\land)$ , disjunction  $(\lor)$ , and negation  $(\lnot)$  operations.
- ▶ Implication  $(\rightarrow)$  and biconditional  $(\leftrightarrow)$  are shorthands for what can already be expressed using the three basic operations above.
- One can prove logical equivalence by enumerating every possible variable assignment (i.e. by using a truth table).



9/9

## Recap

- ▶ Propositional logic allows forming new propositions via conjunction  $(\land)$ , disjunction  $(\lor)$ , and negation  $(\lnot)$  operations.
- ▶ Implication  $(\rightarrow)$  and biconditional  $(\leftrightarrow)$  are shorthands for what can already be expressed using the three basic operations above.
- One can prove logical equivalence by enumerating every possible variable assignment (i.e. by using a truth table).
- ▶ Enumeration is **guaranteed** to have exponential running time.

9/9